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On the propagation of shock waves through regions of 
non-uniform area or flow 
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SUMMARY 
This paper refers to the work of Moeckel (1952) on the 

interaction of an oblique shock wave with a shear layer in steady 
supersonic flow and the work of Chester (1955) and Chisnell(l957) 
on the propagation of a shock wave down a non-uniform tube. 
It is shown that their basic results can be obtained by the 
application of the following simple rule. The  relevant equations 
of motion are first written in characteristic form. Then the rule 
is to apply the differential relation which must be satisfied by the 
flow quantities along a characteristic to the flow quantities just 
behind the shock wave. Together with the shock relations this 
rule determines the motion of the shock wave. The  accuracy of the 
results for a wide range of problems and for all shock strengths is 
truly surprising. 

The results are exactly the same as were found by the authors 
cited above. The  derivation given here is simpler to perform 
(although the original methods were by no means involved) and 
of somewhat wider application, but the main reason for presenting 
this discussion is to try to throtv further light on these remarkable 
results. 

I n  discussing the underlying reasons for this rule, it is 
convenient to use the propagation in a non-uniform tube as a 
sypical example, but applications to a number of problems are 
given later. A list of some of these appears at the beginning of 
the introductory section. 

1. INTRODUCTION 
There are various problems arising in the different branches of fluid 

dynamics which have as a main feature the interaction of a shock wave 
with a non-uniform region of some sort. 

(i) the motion of a shock wave down a non-uniform channel or tube ; 
(ii) the propagation of a shock normally through a plane distribution 

of density, pressure, etc. ; 
(iii) converging cylindrical and spherical shocks (including non-uniform 

states ahead of the shock such as occur in magnetohydrodynamics) ; 

Some examples are: 

P.M. Y 
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(iv) the interaction of an oblique shock with a shear layer in steady 
supersonic flow ; 

(v) the shape and strength of the shock inside the entry of an axi- 
symmetrical supersonic duct ; 

(vi) the propagation of a bore in water of non-uniform depth ; 
(vii) the motion of kinematic shock waves in traffic flow and flood waves 

when the flow conditions downstream are non-uniform. 
We shall ultimately consider all of these problems, but in the general 
discussion we may refer to (i) as a typical example. It should be stated at 
once that only the one-dimensional (hydraulic) formulation is intended 
in (i), i.e. all quantities are averaged over the cross-sectional area and become 
functions of the time and distance down the tube only. 

Of course, even in uniform media, the problem of shock propagation 
cannot be solved analytically in general and numerical methods have to 
be used. But to study some of the main effects of the interaction we can 
consider cases in which changes in the speed and strength of the shock 
are caused entirely by the non-uniform region. Thus, for the propagation 
down a non-uniform tube we suppose that to the left (x < 0) of some 
section x = 0, the cross-sectional area A ( x )  is constant and the shock 
wave initially moves in this constant part of the tube travelling with 
uniform speed. Taking the usual model, we can suppose that the shock 
wave is caused by a piston moving with constant speed; the piston is 
always taken far enough to the left for the reflections from it not to come 
back and interfere with the basic interaction. The  analogous suppositions 
for the other problems listed above are obvious except perhaps in the case 
of (iii) and (v). But the converging shocks of (iii) can be treated as special 
cases of the non-uniform tube. The  cylindrical shock is obtained by 
choosing a wedge-shaped channel with A ( x )  cc (xo - x) and the spherical 
shock by taking a cone-shaped tube with A ( x )  az ( ~ , , - x ) ~ .  In  this 
formulation we can still suppose there is a uniform section with A constant 
before the varying part. However, Guderley’s similarity solutions for 
converging shocks (Guderley 1942) will be discussed below and they do 
not correspond exactly to these initial conditions. But converging 
cylindrical shocks are known to be insensitive to the details of the initial 
conditions. For example, Payne’s numerical calculations (Payne 1957) 
agree closely with Guderley ’s solution although the initial conditions are 
quite different (in fact, they are close to the ones proposed above). The  
same thing will be found here, with similar results for problem (v). 

Apart from the special features of (iii) and (v) the initial conditions 
adopted above will not be exactly fulfilled in practice in the other cases; 
even without the non-uniformities in the medium, the shock may be varying 
due to changes in the flow conditions behind it (such as variations in the 
speed of the effective piston in the model mentioned above). But in many 
cases, the scale of this variation will be much greater than that of the 
interaction and so will have a negligible effect on the ‘ local ’ behaviour in 
the non-uniform region, 
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The considerations here arise from the work of Moeckel (1952), Chester 
(1954), and Chisnell (1955, 1957). Moeckel studied problem (iv) by the 
following method. The shear layer is represented by a set of parallel 
surfaces at which small discontinuities in velocity, pressure, density, etc., 
occur. The interaction of an oblique shock with any of these can be solved 
to find the resulting change in the strength of the shock in terms of the 
change in the incident flow. The successive interactions are not inde- 
pendent, but by ignoring the dependence between them comparatively 
simple laws are obtained for the change in strength of the shock as it 
progresses through the shear layer. With this basic result Moeckel goes 
on to discuss refinements. Chisnell uses essentially the same methods to 
study problems (i) and (ii) ; on the whole, it is more convenient to consider 
these as far as basic ideas are concerned. In the first of them the elementary 
interaction is between the shock and a small change SA in cross-sectional 
area ; the resulting change 6M in the Mach number M of the shock wave 
is given by the formula 

Y Cylindrical shock 

Chisnell Guderley 

615 0.163112 0.161220 
715 0-197070 0.197294 
5 13 0.225425 0.226054 

6A 2M6M 
A - = - (M2- - l )K(M) '  

Spherical shock 

Chisnell Guderley 

0.326223 0.320752 
0.394141 0.394364 
0.452108 0.452692 
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Comment on these is unnecessary ! Payne (1957) determined the motion 
of converging cylindrical shocks numerically for a whole range of shock 
strengths and found that in all cases Chisnell’s law was extremely accurate. 
Chisnell went on to find a higher approximation by including re-reflected 
waves and the corrections turned out to be of the expected small magnitude. 
In his approach the high accuracy of the first approximations appears to 
some extent as a coincidence. 

Chester’s contribution was on different lines. He considered problem (i) 
for the case in which the cross-sectional area A(x)  remains close to some 
mean value. He developed a theory for the small perturbations in the flow 
behind the shock and solved the linearized equations exactly. The  formula 
(1) was first obtained by Chester in this way. Although Chester’s work 
is more restricted than Chisnell’s, it adds greatly to an understanding of 
these results ; it is discussed in detail in the next section. 

Now, the purpose of the present paper is to point out that the basic 
formulae obtained by these authors can be derived in the following significant 
way. First the appropriate equations of motion for the flow are written 
in characteristic form. For example, for a non-uniform tube we have 

pa% dA 
u + a  A dp+pa du+ -- = 0 (4) 

on a positive characteristic dxldt = u + a, wherep, p, a, u denote the pressure, 
density, sound speed, particle velocity, respectively. Then, the character- 
istic relation is applied (quite illogically it may seem) to the flow quantities. 
at the shock wave. But these quantities are all known in terms of the shock 
strength from the Rankine-Hugoniot shock relations. Thus on substitution 
in the characteristic equation, an equation for the variation of the shock 
strength is obtained. For example, in (4) we substitute the expressions 
given by the shock relations for p ,  p, a, u in terms of the Mach number of 
the shock. This gives a first-order equation for M as a function of A which 
can be integrated immediately. It is exactly Chisnell’s formula, the 
differential equation for M ( A )  being identical with (1) .  The constant 
of integration is fixed from the initial strength of the shock in the straight 
portion of the tube. When the area A is constant the variations in shock 
strength caused by non-uniform conditions ahead of the shock come in 
only through the shock relations. 

Even for quite complicated equations it is usually a simple matter to 
write down the characteristic equation corresponding to (4). In  addition 
only the shock relations are required-and these are needed in any approach. 

Once this derivation has been noticed it is easy to see why it agrees 
with the previous methods. Full details are given in the subsequent sections. 
New questions also arise. For instance, this new approach is found to have 
a close connection with Butler’s method for calculating the Guderley 
solutions for converging shocks. Again the method is related in some way 
with ‘ shock-expansion theory ’. These various topics and additional 
applications are discussed below ; the, section headings are self-explanatory. 
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In  concluding these general remarks it should be said that the discussions 
in this paper still fall short of a full understanding of all the questions 
involved; it is still not completely clear to what extent the unexpected 
accuracy of the results in some cases should be ascribed to coincidence. 

2. DETAILED DISCUSSION OF THE METHOD 

As mentioned already, we shall consider first the typical example of the 
propagation of a shock down a tube of variable area A(x )  containing gas 
originally at rest with constant pressure p ,  and density po. We suppose 
that A ( x )  takes a constant value A, in x < 0 and that the shock is initially 

Figure 1. The (x, t)-plane for the interaction of a shock wave with a non-uniform 
region. 

moving with constant velocity U, in this region. The  flow quantities 
p,, pl, a,, u1 behind the shock are determined in terms of U, by the shock 
conditions. Conversely, given u1 (the velocity of a piston maintaining the 
motion for example) the shock velocity U, and the other quantities can 
be found. When the shock reaches x = 0, disturbances are propagated 
back into the uniform flow region as represented in figure 1, and the future 
motion of the shock is modified. This reflected disturbance propagates 
along negative characteristics labelled C- in the figure ; in addition, entropy 
changes are carried along the particle paths labelled P. From the physical 
point of view t,he positive characteristics (one labelled as C-, is shown in 
figure 1) play a subsidiary role. We may note that in x < 0 the C. form 
a simple wave, i.e. they are all straight and 2a/(y - 1) + u = 2al/ (y-  1 )  + u1 
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throughout. 
so outside the region under consideration.) 

(We assume that if a reflected shock wave is formed it does 

The equations of motion are 

pt+up,+p u,+- = o ,  

ut + uu, + -p, = 0, 1 
( P 1 

P t + ~ P z - a 2 ( P t + ~ P z )  = 0, J 
where a2 = yp/p. The characteristic form (i.e. the form for which each 
equation contains derivatives in only one direction in the (x, t)-plane) 
is 

We can also write these as 

pa% d A  dx 
u+a A 
pa% d A  dx 

z-  u - a  A 
dx 
dt 

dp+padu+ -- = 0 on C,: 

dp-pudu+--=O on C- :  1 - U - u ,  

i - u. d p - a 2 d p = 0  on P :  - -  

( 7 )  

The rule is to apply the first of these (valid along a C,) to the shock wave. 
From the shock conditions 

( Y + l ) M  
P = Po ( y -  1)M2+2’ 

where the shock velocity U = a,, M. 
the first of (7 ) ,  we have 

Substituting these expressions into 

where 
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The law of propagation of the shock is given by the function M ( A )  which 
satisfies (9). 

As M + 1, p + 1 and K -+ 0.5 ; hence, the solution of (9) is 

M - 1  cc A+. 

As M + co, p2  + ( y -  1)/2y and 

= 0.394 for y = 1.4; 
hence, 

M A - l E m .  

The corresponding laws for the variations of p ,  p ,  u are then found from (8). 
We must now investigate why this rule works so well. For some reason 

pa2u d A  
dp+pa du+ 

is almost zero along the shock. This means that 

pa2u A’ ($ + p x )  +pa(? +uz)  + u + a A  -- 

is very small at the shock. But, by making use of the first of equations (6) 
(which holds everywhere), we conclude that 

is very small at the shock. Now the obvious first thought as to why the 
rule works is that the characteristic C, follows along behind the shock 
very close to it (see figure l ) ,  and so the relation valid along the C, is a 
good approximation along the shock. This would appeal to a supposed 
smallness of the first factor in (12), but although (u+u-- U ) / U  is zero 
for M = 1, it tends to [ d { Z y ( y  - 1))- ( y -  l)]/(y + 1) = 0.274 (for y = 1.4) 
as M + oc), which is at least a hundred times the error found in the results. 
In fact, it is the smallness of the second factor in ( 1 2 )  which leads to the high 
accuracy. 

I n  Chester’s small perturbation theory it will be shown that pr+paut is 
zero at the shock ; in fact p ,  + puu, is zero everywhere and the above result 
is the correct answer in that theory. However, when finite changes in A 
are considered, as in Chisnell’s work on the cylindrical shock, it is not clear 
why this should be so. From the numerical calculations it is observed that 
$(+pau, is very small, but all the analytical approaches considered so far 
work on expansions assuming essentially that the first factor in (12) is small. 
rl‘hen the high accuracy of the lowest order results comes out as something 
of a coincidence. However, these approaches are very relevant to Butler’s 
calculations and some comments are made in the next section. 
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First we consider Chester’s small perturbation theory. It is clear at 
the outset that if p ,  p, a, u remain close to the original values p, ,  pl,  a,, u1 
respectively, then in the linearized theory we have 

on each C,. Since each C, starts in the region where p = p ,  etc., it follows 
that 

throughout the flow and in particular at the shock. On substituting the 
shock relations the result derived above is obtained. Also, differentiating (13) 
with respect to t ,  we see that pt +pl  a, u, = 0 everywhere. The relation (13) 
must also apply across one of Chisnell’s interactions and this explains why 
the present method gives the same answer as Chisnell’s. 

It is interesting to look at Chester’s full solution. The equations (5) 
may be linearized in the straightforward way* and the general solution 
is found to be 

u;u, A(x)-A,  1 

~ 1 -  U; A, P1 a, 
u-u,  = 2 + - F(x - (a1 + al}t) - 

P-p,  = p q  a1 +H(x-u, t ) ,  

where F, G and H are arbitrary functions. This solution shows very 
clearly how the disturbances are made up of the four contributions ; first, 
terms directly from the area change, then disturbances propagating on 

x - {u, + a,}t = constant (C+), x - {ul - a,}t = constant (C-) 

and x - u, t = constant (P). 

The entropy changes are represented by the function H and it is interesting 
to note that p and u do not depend directly on them. The shock conditions 
provide two relations between p ,  p and u ; these boundary conditions serve 
to determine the functions G and H .  The other function F is determined 
by the flow in x < 0 and in the present case F = O t .  With F = 0 it is 
observed from (14) and (15) that pt+pla,u, = 0. 

* Actually Chester gives a more thorough treatment : he starts with the full three- 
dimensional equations of motion and carries through in detail an averaging process 
which leads to the hydraulic theory. 

.f. Contributions to F arise if the piston motion in the straight portion of the tube 
is not uniform. 
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I n  general, p ,  + p 1  a ,  ut = - 2(u, + a,)F(x - (u, + a&) so that p ,  + p l  a ,  u, is 
constant along a positive characteristic C, ; the t-derivatives knock out the 
terms depending directly on A and this particular combination gets rid 
of the G. I n  the general problem when the disturbances are not small, 
we may expect that in any small region the small perturbation theory holds 
for variations about some local values. Then for each local region, p,  + pau, 
remains constant on a C,. This  leads naturally to  the suggestion that 
pt+pau, varies very little along a C, even when large regions and finite 
changes are involved. If this were so we could argue that all C, character- 
istics start in x < 0 and p ,  +pau, = 0 there; hence, p ,  +pau, = 0 along each 
C, and in particular where they meet the shock. Roughly speaking, p ,  + pau, 
would play the role of the Riemann invariant in simple wave theory. Indeed 
in a negative simple wave p ,  +pau, is constant. Thus, for example, in the 
simple wave formed by the C- in x < 0 in figure 1, pt+pau, vanishes, euen 
though the total changes in p and u may not be small. This provides useful 
support for the contention that pt+pau, is small. However, in the general 
case the possibility that small changes may accumulate over a large region 
cannot be overlooked. Presumably, the result would only hold for flows 
which are slowly varying in some appropriate sense. But a precise definition 
of ‘ slowly-varying ’ which would include cylindrical and spherical shocks, 
whose strengths ultimately become infinite, is far from clear. The  author 
has so far been unable to make further headway in this direction. The  
expression for the rate of change of p ,  + pau, on a C, is quadratic in the first 
derivatives of the flow quantities and so is of smaller order when these 
derivatives are small, but the expression is quite complicated and does not 
seem to suggest anything else significant. It is true that it could be used 
to find a correction term in going to a next higher approximation. But 
the smallness of the correction will only confirm the accuracy of the lowest 
order approximation without throwing further light on the reasons 
for it. 

However, 
one of them is quite systematic and gives a series of successive approximations 
with (9) a6 the first approximation. As a mathematical procedure for finding 
the answer it is satisfactory, but it does not explain why the first approxima- 
tion is so good. This is because it works essentially on the first factor in (12) 
instead of the much smaller second factor. Thus  one feels the method 
cannot be the right one. It is, however, closely related to Butler’s 
calculations for the converging cylindrical shocks and so is worth describing. 
This  is done in the next section for those particular problems. 

This can be said of all the other approaches tried so far. 

3. CONVERGING CYLINDRICAL AND SPHERICAL SHOCKS 

Guderley (1942) 
studied the limiting case of a very strong shock and found that there exists 
a similarity solution representing a converging cylindrical or spherical 
shock. For the cylindrical case we take equations ( 5 )  with A cc (xo-x) 

We must first consider Guderley’s solution briefly. 
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corresponding to a wedge-shaped channel. 
takes the form 

G uderley’s similarity solution 

u = ““f((), t P = POh(t)’ 

where ,$ = (xo- x)/p and a is an exponent to be determined. The shock 
is a line E = constant = to, say, so that its motion is given by the law 
x 0 - x = to ta. For example the shock velocity varies like (xo - x)-” where 
n = (1 -a)/.. When the expressions (17) are substituted in (5)’ ordinary 
differential equations are obtained for f, g, h and the solution satisfying the 
shock conditions at ( = to is required. The exponent a is determined in 
a rather strange way; there is only one value of a which gives a solution 
free of unrealistic singularities in the flow. For other values of a a fold occurs 

\ R e f l e c t e d  

Figure 2. The (x, t)-plane for a converging cylindrical shock wave. 

in the (x,t)-plane and the solution is no longer single-valued. This fold 
would be formed along a particular line 8 = t1 which turns out to be the 
characteristic passing through the centre xo-x = 0 (see figure 2). T o  
avoid the singularity the solution must have certain special properties at 
[ = and these essentially determine a. One of Butler’s suggestions 
(Butler 1954) for calculating the solution is to start with a series expansion 
near = El, thus ensuring regularity there, then the shock conditions at 
f = (,, are sufficient to complete the solution and determine a. 

We now consider this sort of approach directly in the physical plane 
without using the similarity solution. This is independent of the assumption 
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of a strong shock and can be extended directly to other problems. Let 
p(")(x), u(O)(x), etc., denote the values of flow quantities on the limiting 
characteristic. Then the characteristic is given by T = 0 where 

Next, all the flow quantities are expanded in power series in T :  

p ( x ,  t )  = p ' " ( X )  + Tp("(X) + T2p'2)(X) + ..., (19) 

u(x, t )  = d 0 ) ( x )  + T U ( ~ ) ( X )  + T ~ u ( ~ ) ( x )  + ... etc. 

If we substitute these in the equations of motion and equate coefficients 
of T to zero, we get the characteristic relation 

connecting the lowest order terms, and a set of equations for determining 
the higher order coefficients p( l ) (x ) ,  p O ( x ) ,  etc., in terms of p(O), p(O), do). 
(This is in accordance with the general theory of characteristics.) Now, 
the boundary conditions (8) at the shock require 

p y x )  + T(x)p(l)(x)  + ... = Y - 1  

p y x )  + T(x)p'l)(x) + ... = po (Y + 1)M2 
(y  - l)M2 + 2 ' 

do)(.) + T(x)u(l)(x) + ... = a, 

where T ( x )  is the value of T at the shock, i.e. 

For a first approximation, only the zero order terms, i.e. the values on the 
characteristic T = 0 are retained on the left of (21). Clearly, then, on 
substitution into (20), we have exactly the simple rule of this paper. From 
this first approximation for p@), p@), d o ) ,  the coefficients p( l ) ,  u(I) can be 
found and so for a second approximation two terms can be retained on the 
left of each of the equations in (21). This gives improved values of p(O), 
p"), do) in terms of M ,  which (on substitution in (20)) leads to an improved 
expression for M ( x )  and so on. Of course the improved function M ( x )  
differs very little from the first approximation. It is an unexpected bonus 
in this approach. For, the whole approach is based on an expansion in 
powers of ( u + a -  U ) / U  (see (22)) which is not so very small. In fact 
the values of p@), p(O), change by the expected much larger amounts 
between the first and second approximations. For a strong shock, these 
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@to, 
p’ 
d o )  

quantities are proportional to powers of (xo-x), and for y = 1.4 the 
coefficients in the two approximations are : 

First Second 
approximation approximation 

0.833 0.967 
6.000 7.420 
0.833 0.784 

4. CONNECTION WITH SHOCK EXPANSION THEORY 

Shock expansion theory treats quite a different aspect of shock propagation 
but there are one or two points worth mentioning. This method concerns 
propagation down a uniform tube when the effective piston motion varies. 
(Its practical importance lies in the applications to  the analogous problem 
of supersonic aerofoils.) When the shock is weak, the flow is approximately 
a simple wave on the C, characteristics with the Riemann invariant CI given 
by 

2a 2a0 

Y - 1  Y-1 
- - u  = - 

and the entropy S equal to the undisturbed value So. If the shock is not 
weak, a surprisingly good approximation to the pressures on the piston is 
obtained by assuming that the flow is a simple wave with 

2a 
- - u = 1  -u,, s = s, 
Y-1 7 - 1  
2a 

where the subscripts indicate values just behind the shock initially (these 
are easily found from the shock relations and the initial velocity of the 
piston). This is shock-expansion theory. The  formula actually used 
for the pressures on the piston is 

dp - p a  du = 0, (23 1 
because this holds for the simple wave. Since S = S, is exactly true on the 
piston, p and a can be expressed in terms of p ,  and (23) then determines 
the pressure variations in terms of the piston motion. Now, (23) is related 
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to the fact that the characteristic equation appropriate to the C- is 

(for a uniform tube). 

then (23) follows. This is the same condition as the one used in the work 
on non-uniform tubes but with the opposite sign. The  sign change is 
because the main disturbance is on the C, characteristics here, but for the 
non-uniform problems (with a uniform piston motion) it is on the C-. 
The  same thing can be seen from Chester's solution (14), (15), (16); we 
have 

so that the reflected disturbance given by G is ignored in shock-expansion 
theory. In  our discussion of non-uniform regions G is one of the main 
terms. We may also remark that shock-expansion theory makes this 
additional approximation of neglecting G even in the small perturbation 
theory. The  treatment of non-uniform regions is exact in that theory. 
For further details of shock-expansion theory see Eggars, Savin & Syvertson 
(1955) and Mahony (1955). 

(Pt + ( u  - .IPS - p+, + (. - a)u.J = 0, 
Thus if 

pt-pau, = 0, (24) 

P t - ~ I a i u t  = - (~1-a,)G'(x-{u,-al)t), (25 1 

5. KINEMATIC SHOCKS 

Analogous and much simpler shock problems arise in the subject called 
' kinematic waves ' by Lighthill & Whitham (1955), and one might hope 
that discussion of these easier cases would give further insight into the 
more complicated cases. I n  fact it does not : the rule is correct but trizial. 
We consider, for example, kinematic waves in traffic flow on crowded roads. 
The  density of the traffic, k,  and the rate of flow across any section, q, must 
satisfy the continuity equation 

ak aq 
at ax - + - - 0 .  

In  addition q will be some function of k ,  since the average speed of the cars 
( q / P )  will fall as k increases. But if the road conditions are non-uniform, 
this relation will also include x. A shock wave, i.e. a discontinuous jump 
from conditions (ql, k , )  to (q2, k2 ) ,  travels with speed 

u - 92-41 . 
k2-kl ' 

this is the only shock condition. The problem is to find out how such a 
shock, initially travelling with constant speed along a uniform stretch of 
road, varies when it reaches a non-uniform section specified by 

The  solution is obvious : the shock continues to separate regions in which 
q takes the constant values q1 and q2 respectively. The  corresponding values 
of k are functions of x given by (28), and (26) is satisfied, The shock velocity 
varies according to (27). 

k = f ( 4 ,  X I .  (28) 
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Now this solution is exactly the one given by the rule of this paper. 
'The characteristic relation from (26) and (27) is 

Hence the rule takes q = constant along the shock, i.e. q2 is constant. Then 
since q1 is given to be constant ahead of the shock, we have exactly the above 
solution. The  rule is correct for this type of wave motion but is so trivial 
that it does not help with the more complicated cases. 

FURTHER APPLICATIONS 

6. PROPAGATION THROUGH A STRATIFIED LAYER 

Suppose we have a stratified layer with the equilibrium values of pressure, 
density, etc. depending on x. In  general we can suppose that the layer is 
maintained by a body force F (which could also vary with x). Then the 
equations of motion are 

Pt+UPx+Pux = 0, 1 
ut+uu,+ - p ,  = F, 

P l l  
~t + UP, - a2(pt + up,) = 0. J 

I n  equilibrium p = p o ( x ) ,  p = p,(x) where 

. .  

The  determination of p ,  in terms of po is completed by giving the equilibrium 
entropy distribution. 

Chisnell (1955) considered this problem in the special case F = 0, 
p ,  = constant ( p ,  not constant) by replacing the continuous density 
distribution by a piecewise constant function. The  successive layers, 
with p constant in each, can remain in equilibrium because the pressure 
is the same in each. But for varyingp, it is not quite obvious how to proceed 
by that method, since jumps in po  cannot really be allowed at the interfaces ; 
there is no force to balance the pressure difference ( F  is a body force). 
For the present rule, there is no difficulty. The  appropriate characteristic 
relation is 

or 

dp +pa du- F dx = 0. 
u + a  

The  final step is to substitute the shock relations to determine the variation 
of M with x. I n  general the resulting first-order equation M(x) will require 
numerical integration. However, in the special case of very strong 
shocks, (8) simplifies to 
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and we see that the third term in (31) can be neglected (since U is very 
large). Thus the contribution of F is made indirectly through its control 
of the equilibrium density distribution p,(x). With these approximations 
the law of propagation of the shock is 

where 
u Po-8, P c-c 

P = {2+ ,/(&)}-'- (33) 

For y = 1-4, /3 = 0-2158. 
A specific example where this law may be useful is in finding the effect 

of the non-uniformities in the atmosphere on explosion blasts. I n  that 
case, F is the acceleration due to gravity, which is -g if x is measured 
upwards. If we consider an atmospheric layer in adiabatic equilibrium, 
i.e. p ,  = KP;, we have (from (30)): 

where C is a constant. 

7. CONVERGING CYLINDRICAL SHOCK WAVES IN 

MAGNETOHYDRODYNAMICS 

This is a problem of some current interest which we can consider as 
a useful example where both changes in area and equilibrium density 
distribution occur. I n  such cases similarity solutions of Guderley's type 
are limited to power law distributions of density (as well as to very strong 
shocks) but the methods of this paper can be applied to the general solution. 
The  investigation will be based on the Lundquist equations of magneto- 
hydrodynamics (Lundquist 1952), and in particular the shock relations, 
etc., are all taken from a report by Friedrichs (1955). 

In  terms of the velocity vector u, the magnetic field vector H ,  pressure p 
and density p ,  the equations are 

aH - + V X ( H X U )  = 0, 
at 

& + V . ( p u ) = O ,  at 

2 at +u.v*--al($ +u.vp) = 0, 

aU 1 
- +(u.v)u+ -op+ ? H ~ ( V ~ H )  = 0, 
at P P 

(35) 

(37) 

where p is the permeability. The  Maxwell equation V . H = 0 is essentially 
included in (35) since the divergence of that equation gives a(V . H)/a t  = 0. 

For flows with cylindrical symmetry it is assumed that u is radial and 
that all flow quantities are functions of the radial distance r and the time t. 
The transverse and axial components H,, H,  of H need not vanish, however. 
Indeed they are of primary importance since it is easily shown that the 
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radial component H,. must vanish or the solution becomes trivial. For, 
if H, # 0, the condition that the 0 and z components of H x (V x H) must 
vanish in (37) requires that r H ,  and Hf be independent of r .  In  turn these 
lead to artificial forms for u and the only feasible case turns out to be 
H ,  = H, = 0. But then the flow problem is independent of the magnetic 
field. Thus, only the case H, = 0 is considered. 

With these conditions of symmetry, equations (35)-(38) reduce to 

a 
at ay 

i a  
at ray  

ap  au 
at ar ar r 

au au 1 ap i p  a P H; 
at ar p a r  z p a r  P Y  

i3 + --(H#U) = 0, 

iZG + - - (rH,u) = 0, 

?.!! +u-  + p -  + p -  = 0, 

- +u- + -- + ---(Hz+H:)+ -- = 0, 

In  the equilibrium state ahead of the shock, these equations reduce to 

p ,  + +p(H,",, + H;,) + p  - dr = constant, (39) Ego 
which determines the pressure distribution in terms of the magnetic field. 
(Subscripts zero are used for equilibrium values.) The  density distribution 
is deduced from Po and the initial entropy distribution. I n  the usual case, 
the entropy will be uniform so that p ,  ccpl;. 

Turning now to the shock relations, the general form simplifies in this 
case since the magnetic field has no normal component. The appropriate 
relations giving the values behind the shock in terms of the shock velocity U 
and the equilibrium values are 

H(U-u) = H, U, 

p ( U - u )  = Po u, 
p + ;pH2 + p (  U -  u ) ~  = P o  + ;pH: + P O  U2, 

It is convenient to be able to solve these relations and express all the 
quantities in terms of a single parameter characterizing the shock strength. 
This can be done in terms of the parameter 5 = pipo. Then, 

P = P o t ,  u =  u-, 
(-l  t 1 
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where a, is the sound speed 2/(ypo/po) and b, is the Alfvkn speed 2/(pH,2/p0) 
(i.e. the speed of magnetic waves in an incompressible fluid). There are 
two possibilities leading to strong shocks, i.e. large values of p/p ,  ; either 
$ is close to the value ( y +  l ) / ( y - -  1 )  or bi/ai is large. The former is the 
usual case found in gas dynamics, but it is an interesting fact that in 
magnetohydrodynamics strong shocks may also arise when the magnetic 
field is very strong for any value of < > 1.  When f + ( y +  l ) / (y-  l),  the 
shock relations take the simple form 

Y + l  
= 

2P" u2 P--- y + l  ' 
U N -  u. J 

Y + l  

It should be noted that in this limiting case, the expressions for p ,  p, u, 
in terms of U are independent of the magnetic field. 

Now we apply the rule described in the earlier sections to determine the 
motion of a converging shock. The characteristic equations corresponding 
t o  the first pair in (6) are 

- 0 (42) pc2u 1 p H $ u T c  
u + c r  r u + c  

where 

In this section the particle velocity u is taken as positive in the direction 
of increasing Y .  For a converging shock, therefore, u is negative and we 
must use the relation for a negative characteristic to determine the shock, 
i.e. 

The final step is to substitute the shock conditions (40) into this relation. 
A first-order equation for t ( r )  is obtained, and this determines the shock. 

In  general, the equation will require numerical integration. But in the 
special case of very strong shocks with 5 + ( y  + l)/(y - l) ,  the simplified 
shock conditions noted in (41) may be used. From these conditions we 
see that the corresponding approximations in (44) reduce it to 

pa% dr 
u - a  r 

dp-pa du+ -- = 0, 

since the other terms involving the magnetic field are of smaller order in 
the shock velocity U. Now, when (41) is substituted in this equation, the 
resulting equation for U(r)  integrates immediately to 

u oc p; pr-, (45 1 
F.M. Z 
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where 

(46) 

p cc p p p r - 2 n .  (47 ) 

The corresponding law for the pressure behind the shock is 

The  exponent n is exactly the one appearing in the solution for a converging 
cylindrical shock in a uniform medium (see equation (11)) and B is the 
exponent that was found in (33) for a plane shock in a non-uniform medium ; 
(45) shows the combined effect. It is interesting to note that for a strong 
shock the magnetic field enters the law of propagation only indirectly through 
its control of the equilibrium density distribution po. This is exactly 
analogous to the situation found in the last section for the effect of the body 
force F. No doubt (45) and (47) apply in general to any case when the 
distribution is not uniform whatever mechanism maintains the density 
distribution. But for weaker shocks, the details of the particular force field 
would be required. Since 1 - Zp > 0, a general consequence of (47) is that 
the shock will be relatively strengthened or weakened according as the 
density po increases or decreases towards the centre. 

The  law of propagation of the shock wave can be given explicitly in the 
case of weak shock waves also. This case is less interesting and only the 
final result is noted. It is found that 

8. SHEAR LAYERS IN SUPERSONIC FLOW 

The  problems in steady supersonic flow are analogous in many ways 
to the unsteady problems considered so far. There is, however, one important 
question that arises in steady flow problems ; the flow downstream of the 
shock may be either supersonic or subsonic. The  questions and methods 
discussed in this paper apply where the flow is supersonic; if the flow 
downstream of the shock is subsonic the methods are meaningless. With 
this restriction the problems can be solved in the same way and the 
perturbation methods etc. discussed earlier go through and give similar 
results. 

In  this section we note how Moeckel's original results can be obtained 
by application of the characteristic relation. We consider the plane flow 
represented in figure 3 .  The  incident flow is uniform in y < 0 but varies 
with y in y > 0. The  only requirement is that the pressure p o  be constant ; 
then, the density distribution po(y)  and velocity distribution qo(y) can be 
arbitrary. (In reality, of course, viscous forces will arise in such a shear 
layer but we must confine attention to the case when these can be neglected.) 

Accordingly the discussion will be brief. 
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In supersonic flow the derivation of the characteristic relations from the 
usual equations of motion involves much more manipulation than in the 
unsteady flow discussed in $ 3 .  The details are given in most books on 
compressible flow (although not all books give the general non-isentropic 

Figure 3. Interaction of an oblique shock with a shear layer. 

form required here) and it will be sufficient to quote the result. On a 
positive characteristic (C, in figure 3) ,  the flow quantities must satisfy 
the relation (see, for example, Howarth (1953)) 

= o on 9 = tan(p+ 0 1 ,  Idp + d0 
y p cospsinp dx 

where p is the pressure, 0 is the angle of -the velocity vector to the x-axis, 
p is the Mach angle sin-l(a/q) where a is the sound speed t / ( y p / p ) .  The 
rule is to apply this relation between p and 0 along the shock. 

The shock conditions may be written 

Y - 1  2 1 
Y + l  y +  1 MEsinpcosp' 

tan(,B-8) = - t a n p +  - 

qcos(P-8) = qocosp, 

where ,B is the angle of inclination of the shock to the x-axis. From (49) 
all the flow quantities can be expressed in terms of /3 and the upstream flow. 
The shape of the shock is found by substituting these expressions into (4s). 
A first-order equation is obtained for p as a function of y .  Of course, any 

2 2  
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of the flow quantities can be chosen as the variable instead of /3 and a similar 
equation obtained. 

Moeckel introduces the following notation for the solutions of the 
relations (49) 

P = POfl(J,!fO>Ph 1 
Q =f2(Mo, PI,  t (50) 

y(sinpcosp)-l =fdM0,P). 
When these are substituted in (48) (noting that Po is constant), we have 

This is Moeckel’s result. 

9. AXISYMMETRICAL DUCT IN SUPERSONIC FLOW 

An interesting application in supersonic flow is to the shock formed 
If Y measures distance from the in the entry of an axisymmetrical duct. 

axis, the appropriate characteristic relation is now 
sin 8 dr 

y p  cospsinp cospsin(p-Q) Y 
I_* - dB + - = 0. 

The change in sign from (48) arises because the shock inside the duct is 
formed by the negative characteristics ; since Q is negative in this case the 
signs of (48) and (52) eventually agree and the only essential difference is the 
additional term in (52) due to  the cylindrical geometry. The shock shape 
is then obtained by substituting the shock conditions (49) into (52). In 
this case we assume uniform flow upstream of the shock so that Mo etc. 
are constants. Then, the equation for P(r)  takes the form 

where f (6) is a known function. It is found thatf(8) > 0 so that increases 
as Y decreases towards the axis ; hence the strength of the shock increases 
towards the axis. However at some point before the axis is reached the 
flow behind the shock becomes subsonic and certainly (53) does not apply 
beyond this point ; in fact, f ( p )  becomes imaginary. In the real situation, 
Mach reflection occurs and the flow pattern becomes very complicated. 
It is easy to  see that the Mach reflection must occur somewhere before 
this ‘sonic point’ is reached because the reflected shock must have 
supersonic flow upstream of it. However it seems reasonable to assume 
that ( 5 3 )  applies until the triple point is reached. 

If we denote the radius of the duct by ro and the initial angle of the 
shock by Po, (53) gives 

P 

8. 
The initial shock angle Po is a function of the initial angle do of the wall 
of the duct (it is given by the third equation in (49)). Thus, according 

l o g 2  =l f(P)  dP. (54) 
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to (54), only the initial angle of the wall duct aflects the shape of the shock 
appreciably. This corresponds to  the result for cylindrical shocks that the 
motion of the shock is nearly independent of the piston motion (see $ 1 ) .  
At the sonic point, p takes a value p, depending only on Mo and y,  and the 
position of this point is given by r = r,  where 

14.24" 11 *62" 

Y S I Y O  1 .ooo 0.659 

0 0  

As a check on the present method, the predictions of (55) can be compared 
with calculations of the shock shape by the numerical method of character- 
istics (Ferri 1946). In particular, it is convenient to check the dependence 
of ro/r, on 0,. The integral in (55)  was calculated for a few values of Oo 
using M,, = 1.6, the value chosen in Ferri's calculations, and the results 
are given in the following table. 

8.66' 3.59" 

0.337 0.048 
- 

A graph of the function is given in Ferri's paper and the values given above 
fit almost on the curve ; the curve is shown in figure 4. This problem is 
a fairly severe test of the simple rule presented here and the very close 
agreement with accurate calculations gives ample support of the practical 
usefulness of this method. 

Figure 4. The variation of flow angle 0, with distance y o  from the axis in supersonic 
flow inside a duct. 

10. PROPAGATION OF BORES IN SHALLOW WATER 

The application to this case is quite straightforward but the results 
require special comment. 



358 G. B. Whitham 

If h(x, t )  denotes the depth of the water, ho(x) the undisturbed value 
ahead of the bore, and u(x , t )  the particle velocity, the equations of the 
shallow-water theory are 

?l+{(hO+rl)UL = 0, 1 

du+2dc = g - dhJ 

ui + uu, +gq, = 0, 1 
where r )  = h - h,. The appropriate characteristic’ relation is 

u+c’ 
where c = z/(gh). The bore conditions are 

h-h  
u = -5 u. 

h 

(57) 

(58) 

( 5 9 )  

It  is convenient to introduce M = U/2/(gh) and determine first the variation 
of M with x. Then the height of the bore is given by 

= h-ho = 2ho(M2-l)  (60) 
and the bore velocity by 

From (59), (60), and (61) ,  

(62) 
1 

2 M ( M 2 - 1 )  1 
- d(ZM2-1) ,  m- 

v’(ghn) z / (2M2- 1)’ 

C 

- U -- 

Substituting these expressions in (57), we obtain 

. ( 6 3 )  
1 dho = - 2(2M3+2M2-2M- 1)(4M4+4M3- 3M2 - 2M+ 1 )  
h,m ( M 2  - 1)(2M2 - 1)(2M4 + 6M3 + 2M2 - 3M-  2) 
The range of variation of M is 1 < M < 00 and in this range all the 

factors in ( 6 3 )  are positive. Therefore, M always increases as ho decreases 
and vice versa. For weak bores (T/h, < l ) ,  M is near 1 so the asymptotic 
form for (63)  is 

1 dho - 4 1  -- - -_- 
hodM 5 M - 1 ‘  

Hence, 
M -  1 cc hr5I4, h,1‘4. (64) 

This agrees with the result of the linear theory. 
(q/ho $ l ) ,  M is large and the approximate form of (63) is 

For strong bores 

4 1 dho = - - 
h,dM M -  

Hence 
M a  h,71’4, r )  a 
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It should be noted that for weak bores q increases as h, decreases, but 
The critical value M, of M for strong bores q decreases as h, decreases. 

which separates these two regimes is the value for which 

The equation for Mc is then found from (63) and the value for Mc can be 
calculated. I t  is found that M p  is approximately 1.2; the corresponding 
value of q/h,  is 0.9. 

This result for the variation of q with h, has strange consequences 
when we apply the above theory to consideration of a bore coming into the 
shore line of a sloping beach. Assuming that the bore is sufficiently weak 
initially, it will increase in height as expected, but eventually, although 
its strength q/h,  continues to increase, its height q will decrease. I n  the 
final stage, 9 K h1j2 as given by (65) so the height of the bore tends to zero. 
This is certainly not in accord with preconceived notions of what should 
happen. We might consider that the lowest order approximation is not ade- 
quate to treat the extreme case in which h, + 0. It would not be surprising; 
in the analogous problem of a shock moving into a stratified medium, Chisnell 
found that it was necessary to go to a second approximation (i.e. include 
' re-reflected waves ' in his theory) in such extreme cases. However, for 
this water-wave problem the idealizations of the basic shallow-water theorv 
and bore conditions are drastic ones, and we can see immediately that they 
lead to trouble. For, one expects that in the true situation the bore 
velocity U and height h approach finite values at the shore. But, if this 
is so (58) cannot hold as h, + 0. Thus any theory which includes (58) as 
a basic condition cannot lead to the expected results. In  fact (65) does 
predict a finite value for U so (63) gets one of the expected results. For q 
to have a finite value as h, + 0, U must become infinite like hG1l2 according 
to (58) ; this result would have been unsatisfactory also. It is easy to see 
why shallow-water theory may break down when strong bores are involved. 
In shallow-water theory vertical accelerations are neglected and the motion 
is assumed to be essentially horizontal. It is possible, therefore, that the 
theory breaks down when the large change in water levels at a very strong 
bore is considered. 

On the other hand, even though the idealized model may not describe 
reality very well it does conserve mass, and the feeling that the height of the 
bore should be finite is based partly on this. For the height of the water 
surface must be increasing on the whole, since we are assuming that there 
is a region of uniform depth away from the shore providing a continual 
inflow of water. If the bore height tends to zero it must be followed by 
large (continuous) increases in depth. 

T o  settle these points much more extensive investigations are necessary. 

This paper represents results obtained at the Institute of Mathematical 
Sciences, New York University, under the sponsorship of Contracts 
N6ori-201, T.O.l and Nonr-285(06) with the Office of Naval Research. 
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